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CHAPTER 1

The Hoyle-Narlikar heory

of Gravitation

1. Introduction

The success of Maxwell's equations has led ©o
electrodynamics being normally foraulated in terms of fields
that have degrees of freedom independent of the particles in
them. However, Gauss suggested that an action-at-a-distance
theory in which the action travelled at a finite velocity
might be possible. This idea was develoved by Wheeler and
f'eynman (1,2) who derived their theory from an action-princinle
that involved only direct interactions between pairs of part-
icles. & feature of this theory was that the 'pseudo'-fields
introduced are the half-retarded plus half-adveénced fields

claculated from Lthe world-lines of the particles. lioweve

I,
(3)

Wheeler and lFeynman, and, in a different way, Hogarth

were able to show that, provided certain cosmological

conditions were satisfied, these fields could combine to

zive the observed field. Hoyle and Narlikar (%) extended the

tueory to general space-Uimes and obtained similar theories
Fal i 2 | [ ] (5) 1 ——— 2 4o r 4 (6)
for their 'C'-field nd for the gravitational field ,

It is with these theories that this chapter is concerned.

cesswuvoessof




It will be shown that in an expindinz universe the

advanced fields are infinite,and the retarded fields finite

PThnis is because, unlike electric charges, all masses have the

same S1lgn.

2. The Boundary Condition

Hoyle and Narlikar derive their theory from the

action:

4 -2 ‘jcfa,&)ctadb,

a tb
where the integration is over the world-lines of particles
a, I In this expression q is a Green function

that satisfies the wave equation:

farre et AR OOEXT o S X
G (X, X )J 9 g kGl ) x/“—j— )

where S is the determinant of i . oince the double sum

3
in the actionaA is symmetrical between all pairs of
particles &, b , only that part of G{hnb) that is

symmetrical between & and h will contribute to the action

i.e. the action can be written
/Ff S Zi gJ Cm('a,.b)cil.q,c{ b

where (i"k(a_lj) - o;;é ('a![;) -+ ’; G (b, &)_

thus § must be the time-symmetric Green function, snd can

i ad £ .
be written: Q = 42 (agt T-ZQQAV where Gﬁet




C.

functions.

ded and advanced Green

the retar

and Nodv are
By reqguiring that the action be stationary under variations
of the ﬂlj’ HHoyle and Narlikar obtain the field-equations
L la) (b)( : ( s 0
& - ' fi)
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consequence of the particular choice of Green function, the
contraction of the field-equations is satisfied identicall:
‘“here ave thus only 9 equations for the 10 components of %LJ
and the system is indeterminate.
{'a
iioyle and Narlikar therefore imvnos ﬁ‘fi = ﬂﬂo =¢const .,

_ {:?L« m(’ﬁ);?’ (b)J

However, &s

_YQ#(’I) CL) CLQ

"smooth~-fluid'

@5 the tenth equation. By then makin- the
A . , éi (a) (b) 2
approximation, that is by putting M e m
i e 2
a#0b
they obtain the Finstein field-equations:
(R, -5Rq ) -7
(DMO v i oL 9;’” = /{.f‘f
Thereis an important difference, however, between these
toeory

field-equations in the direct-particle interaction
the usual general theory of relativity. In the
metric that

and in
general theory of relativity, any

satisfies the




the field-equations is admissible, but in the direct-particle

interaction theory only tnose solutions of the field-equation

are admissible that satisfy the additional requirement:

m,(z) - £m ). £(6(x0) da

1

ézqut_(x)a)c{a t iéfcagd (’I,C\)d',c’»

This requirement is highly restrictive; it will be shown
thet it is not satisfied for the cosmological solutions of
the kinstein field-equations, and it &appears that it cunnot
be satisfied for any models of the univerie thot either
contain an infinite amount of mattei or undergo infinite
expansion,

The difficulty is similar to that occurring in
Newtonian thecory when it is recognized that the universe
might be infinite.

The Newtonian potential (P obeys the equation:

135,{.- - Kp ({9'70)/

where f is the density.

i~
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In an infinite static universe, T? would be infinite, since

the source always has the same 3ign. The difficulty was resol-
ved when it was realized thut the universe was expending, since
in an expanding universe the retarded solution of the ahove
equation is finite by a sort of'red-shift' effect. The

advanced solution will be infinite Ly & 'blue-shift' effect.

I'nis is unimportant in Newtonian theory, since one is free

=
o}

to choose ihe solution of the equation and so mzy ignore €l
infinite advanced solution and take simply the finite
retarded solution.

wimilarly in the direct-particle interaction taeory the

M -field satisfies the equation:

(Jm + é’[\)m = N (NPO)

where A] is the density of world-lines of particles. As in
the Newtonian case, one may cexpect that the effect of the
expansion of the universe will be to make the retarded solution
finite and the advanced solution infinite. However, one is

now not free to choose the finite retarded solution, for the
equation is derived from a direct-particle interaction action-
orinciple symmetric between pairs of particles, and one must
choose for M. half the sum of the retarded and advanced

solutions. We would expect tuls to be infinite, and this is
s ?

slhiown Gto be s0 in the next section.




. The Cosmological wolutions

1'he Robertson-Walker cosmological metrics have the

2 3 7 i 2 204 A2Y)
(LS’E: CU‘Q'- RQ(.ET) [_-iL + T"{(c{,@L-'r Sin E/‘t(,é /;I
/ 1

form

- Kr#
Since tuney are conformally flat, one can choose coordinates

in which they become . X _ N ) : P
e LATLd- dp*pple Bl poantdd ¢,
i 2 LR
I 7&5 o K Rl - B S

where 70}; is the flat-space metric tensor and
A

S — _ V;(V) \
STt &K Cerp)dlte ¢ KT - £)§ '

L AL (ep) = CR®

For example, for the Einsteip—dnﬁaitter universe
K ;ojzu@¢§%% (0«tes0)
1
gL' s R :(i)? (@/\;“ﬂ<‘o@)£ ~'
T

!

For (2-:T3t3)

I'or the steady-state (de Sitter) universe
K =0 R(r):  E (-0z€<20)
eT




The Green function QK'(O.J b) obevs the equation
o o ~ G »
G, b)~ & RC™ (0, b) = & (a,b)
= n -
I'rom this it follows that J

Bl 3 /n%ebd 0O, n E 3w
7 s (M1 5 Ve i%ﬂ) a

- JLT9(a, b)
If we let G*: 51"§, then

P75 ) F Y

This is simply the flat-space Green function equation, and

asnce

G "( 0%, [0) - ﬁ:(@;_) [—ﬂf"ﬁ__@
g L JLLT)

The 'm -field is given by

:’J'L(‘?.‘,) 3 S’me/ﬂﬂ (lxh 2 j: (m're!: N /}LLL:JV,).

for universes without creation (e.g. the Linstein-de Sitter
Vo= R
universe), = TN, i B aonnt. Yer




aniverses with creation (steady state) ﬂ/; /L il 2 cons
/

m’m)./, (VL\,) - -D"fr (?fjjm;&\tl) G mr 2(:&.?’

G T

where the integration is over the future light cone. This

will normally be infinite in an expanding iniverse, e.g.

the minstein-de BSitter universe.

; =8 o 7 {,
i\ “n Vi o v £ ?
M@.LC &) weo] B n ( L, Tk, 2
T
LLl
= O
In the steady-state universe
r g 2 o T 3 : |
[y o, o] . g _ AT Z\ b L'_
MCL:‘L/,(L‘) = ‘Z‘f R— f (Lfl J>C’L .
i T 2

By contrast, on the other hand, we have

S i
Moo (LT') -0 JLy

where the integration is over the past light cone. This

will

L




normally be finite, e.g. in the Zinstein-de oitter universs

i )

(e "'12 ) 1’\ -
M (?) = L, I LI o = Aog s
PR s 3 -—fb( C, 2,) ol e, = oz )

while in the steady-state univesrse

( ok e T\3

ﬂr\_ T = o I' N " . A t./c.
A [ i — "’ Ci
e fl s P ( L.'l { ) 2

o R

i T
= 20l
Thus it can be seen that the solution M = const. of the

equation

|
D_f)—l_'f'él?m.:/v

is not, in & cosmological metric, the half-advenced plus
half-retacrded solution since this would be infinite. In fuct,
in the case of the Binstein-de Hitter and steady-stute metrics,

it is the pure retarded solution.

4, The 'C'-l'ield

Hoyle and Narlikar derive their direct-particle

interaction theory of the 'C'-field from the action

A . ébé ([ Cla,b)yiw da'elh]




where the suffixes a, b refer to differentiation of

A
(f (QJJ?) on the world-lines of (\, b respectively

& ? = : : . 5
Y is a Green function obeying the equatlon

oG (x,x) = 8 (X, X)
/=3

ve define the 'C'=field Dby
C(x) éjf(’}f O~>
Y
and the matier-current .J by
e , i<
éjéqij,b)ctb.
N - i< —— _[f
Then C(JC) s FC(I,j)J ((j)ji’\/ ﬁ’ C(_-’XL 3
DC_ = \.j _,'F’(
de thus see that the sources of the 'C'-field are the places

where matter is created or destroyed.

is in the case of the 'm. '-field, the Green function

must be tlmo—avm wetric, that is A (
C_)

C}1}£)> 2 (;? t-(CK 27) 2 (;




Hoyle and Narlikar claim thoet if the action of the

10! —field is included alon; with the action of the '/M '-field,
a universe will be obtained tnut a@pproximates to the steady-
state universe on a large scale although tiaere may be local
irrezularities. In this universe, the value of C will be
finive and its gradient time-like and of unit magnitude.

Given this universe, we may check it for consistency Dy
claculating the advanzed and retarded 'C'-fields and finding
if their sum is finite. We shall not do this directly bhut
will show that the advanced field is infinite while the retar-

ded field is finite.

nree—

Consider a region in space-time bounded by &

i

dimensional space-like hyyersurface:p at the present time,
and tne past light cone ji of some point F) to the future

of j) A

By Gauss's theorem
DC/-—*golka ACd S
dn

v
S+

> JK;:«:'/”j’d'j('kf

a B

Let the advanced field produced by sources within V{ be C

. o Ct. 2 .
Then C and 7 will be Zero on éi , and hence
o n




J-H.V \/—3&:1’.14 S | C‘jb:?([f S :

- I/
\
;hrbLJ ! is the rate of creation of matter= n (const.) in
- JK

the steady-state universe, and hence

* ‘D_Q{(i,g = Fb\/.
D) I

48 the poinL‘p is taken further into the future, the volume

of the regioni/ tends to infinlity. However, the areca of the
D
hypersurface tends to a finite limit owing to horizon
- . | QL' o
effects. ‘‘herefore the gradient must be i1nfinite.
on
A similar calculation shows the gradient of the retarded
field to be finite. 'Their sums cannot therefore ziwve the
field of unit gradient required by the Hoyle=lMarlikar Lheory.

It is worth noting that this result was obtained

without assumptions of a smooth distribution of matter or

of conformal.flatness.




5. Conclusion

It is one of the weaknesses of the Hinsteln theory of
relativity that althoughn it furnishes field equations it does
not provide boundary conditions for them. ''hus it does not
sive a unique model for the universe but allows a whole series
of models. Clearly a theory thit provided boundary cond.itions
and taus restricted the possible solutions would be very
attractive. The Hoyle-Narlikar theory does Jjust thut(the
requirement thet M = if”}at L ﬁ:”‘ai)ﬁ is

equivalent to a boundary condition). Unfortunately, as ue
have seen above, this condition excludes those iodels that
seem O correspond to the actual universe, namely the
Robertson-wallkker models.

The calculations given above have considered the universe
as being filled with a uniform distribution of matter. 'his
is legitimate if we are able to make the 'smooth-fluid'
approximation to obtain the iinstein equations. Alternatively
if this approximation is invalid, it cannot be said that the
theory yields the Einstein equations.

It mizht possibly be that local irrezularities could make

Mg Dy finite, but this has certainly not been demonstrated

and seems unlikely in view of the fact thut, in the Hoyle-

~field,

_,‘i
S

Narlikar direct-particle interaction theory of their




which is derived from a very similar action-principle, it can

be shown without assuming a smooth distribution that the
advanced 'C' field will be infinite in an expanding universe
witn creation.

The reason that it is possible to formulate a direct-

ct

particle interaction theory of electrodynamics that does no
encounter this difficulty of nhaving the advsnced solution
infinite is that in electrodynamics there are ecual nuubers
of sources of positive and negative sign. Their fields can
cancel each other out and the total field can be 2zero apart
from local irregularities. This sugzest that & possible way
to save the Hoyle-Narlikar theory would be to allow masses of
both positive and negative sign. The action would Dbe
: ) : f - .
A = ,f/_{ 2 ?'Q' ?/b j({*@;' b) d'a C(lb (C’:Csj{Zb = :{

Y

where ?Q_,?_b are gravitational charges analogous to

electric char es. Particles of positive G 1in & positive

'm '=field and particles of negutive CL in a negative 'm '-
field would have the normal gravitational properties, that is,

tney would have positive gravitational and inertial masses.




L

A particle of negative i‘ in a positive 'm '=fiel

still

follow a geodesic. Therefore it would be stiracted b-

a particle of positive CL . Its own gravitational effec

however would be to repel all other particles. ‘hus it would

nave the properties of the negative mass described by Bondi

that is, negative gravitational mass and negative inertial

Mmass.

tnese
there

would

with antimatter,

’ince there does not seem to be any matter having

vroperties in our region of space ( wherem L= const

F w

must clearly be separation on a very large scale. It

not be possible to identify particles of negativ G

!/

LL

inertial mass. Hwever, the introduction of negative masses

would probably raise more difficulties than it wuld solve.

5O )

since it is known that antimatter has positive
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PERTURBATIONS

1. Introduction

Perturbations of a spatially isotropic and homogeneous expanding
universe have been investigated in a Newtonian approximation by
Bonnor(1) and relativistically by Lifshitz(z) Liftshitz and
Khalatnikov(B) and Irvine(u), Their method was to consider small
variations of the metric tensor, This has the disadvantage that the
metric tensor is not a physically significant quantity, since one
cannot directly measure it, but only its second derivatives. It is
thus not obvious what the physical interpretation of a given
perturbation of the metric is. Indeed it need have no physical
gignificance at all, but merely correspond to a coordinate trans-

formation, Instead it seems preferable to deal in terms of

pérturbations of the physically significant quantity, the curvature.

2, Notation

Space~time is represented as a four-dimensional Riemannian space
with metric tensor 8., ©Of signature +2. Covariant differentiation
in this space is indicated by a semi-colon. Sguare brackets around

indices indicate antisymmetrisation and round brackets symmetrisation,

The conventions for the Riemann and Ricci tensors are:-

Ve;fbc) = 2 R po.c b Vp

Ra,b = Rapbi:\

1?&5(& is the alternating tensor.
Units are such that k the gravitational constant and ¢, the speed of

light are one.




3, The Field Equations

We assume the Einstein equations:

T.

al

Rab - = R = -

where Tab is the energy momentum tensor of matter, We will assume

that the matter consists of a perfect fluid. Then,

Tab"-?- }Auqub.; '}'\.h“b

where U_ 1ls the velecity of the fluid, U, B* = =9
p is the density
. ‘jx is the pressure
' haw = o o+ U, & is the projection operator

| into the hyperplane orthogonal to U, :

: ho;, L(Jb = 0.

We decompose the gradient of the velocity vector U, as

‘ Ui b= Wap+ Gup + 5 hag O -u,u,

' where tla - Llu;leb is the acceleration,

I 6 = U, * is the expansion,

‘ T = WU(c;d) he l—ﬁl, - % habg is the shear,

‘ Waly = Uged] e, hi is the rotation of the
flow lines Ua. We define the rotation vector W, as

| G2y % % Dokad w = u®

‘ We may decompose the Riemann tensor R a into the Ricci tensor

abc
I. Ry, and the eyl tensor Cobed °
Roabed = Cabed - gq[d R:.J -9 bic ‘R.t]q == R/g FalcHel )b )

Cabed = Clab]id)

Cl-;‘,'b-:o. - &= CQ.[ bc.c]]




is that part of the curvature that is not determined locally by

Gabcd
the matter. It may thus be taken as representing the free gravit-

ational field (Jordan, Ehlers and Kundt(5)). We may decompose 1t

into its "electric" and "ma netic" components.
g

Eoo = = Cakpy uFut ,

WV r -
Moy, & ™% e Mqrbs UpU ?

cd — fc.rd (¢ ~d

—27)abed uf HqLCUd}—QUCJ}NS iy He (e L.tb]

E“b = E'(’alg) ) H ob = H(ﬁ.b)

B and Ha each have five independent components.

ab b
We regard the Bianchi identities,

Robf_cot_',e] -9

ag field equations for the free gravitational field.

Then a (6)
Cabed’ =+ R c[b,-qj+“'6” 8-:{512;‘;3 (Kundt and Trtmper,‘-’)

.




ysing the decompositions given above, we may write these in a form

gnalogous to the Maxwell equations.

de

d c .
hd_b E’bc;ﬂ{ I’\c + > Ho.bwb"’ Oobcd Ubo‘ e H =% hubH$b 7

¢ de )
,habec;thd“: S Eabtﬂb‘vab(d UbO_CeE &:(F*h) Wgq 5

»

d; c
1 E_, + h(a{yjb}(xde ue H, *+ FuB - Ea®Wy.

C
'—E (ng)c - )70{“_043 }?bpqt‘ HCUP O““’ Eﬂr

o . . ‘
+ 2 H qnhcd& usue = - ?Q‘l*f') 6013 7

. y s ;
L Hoy - h(a Ne)cde u® Ey Je#— Ha & = Ht(ﬂwb)‘“-
& H((’u C'rb)r. = )?DGCJE "prqr‘ MC uP G_n{q H a

el .
+2H% Ypede U UE < o .

where 1 indicates projection by h_, orthogonal to Ug.

(),

(¢cof. Trlmper,

The contracted Bianchi identities give,
(Rﬂb*%a“bR)}b:*]mb: = 0 )
J +(/A+-ﬁ)8 = O :
0_,(+'jm) lin-*'ﬁ;b hbuﬂo 2

The definitien of the Riemann tensor 1is,

U‘o;[_bc.} = E‘Ra?}ac U‘P

(2)

(3)

(5)

(6)

Using the decompositions as above we may obtain what may be regarded

as "equations of motion",




2wt -2t £ 05+ 4% - F(pe3h)

i

o
; - 4 B 19
L @op= -5 Wab B #2800, Wy + Uipid] LHO

= 6-@'!.‘) = ._E'Q;J = C"‘)chcb "dnc_dcb i %—O_ab@

1 g 8 ) .
-5 hap (207 2024+ A7) + UgUb

+ i&(p;qj}ﬁi fﬂl ;

2 2 2 b
where 2 " = &)ab<gcb 5 LT s Tak O

We also obtain what may be regarded as equations of constraint,

B,,h: =2 [(mb(,)w 6 %eb) hS - 1” (Wav .fo--ng)]

P a P s
(;)ﬂf' = 2 W, U )

r cl -2 .
Hub = “h(a )?b)r;d;: UQ’L{J&){J;L P O*{d,e) .

We consider perturbations of a universe that in the undisturbed

in conformally flat, that is

Cabcd

By equations (1) - (3), this implies,

G‘o!rj-‘:‘- (-n-)d.b_:'o

b
hab#;'b = 0= @;bhq

(8)

(10)

14

112)

state




If we assume an equation of state of the form, h = h(w

fhen by (6), (10), hohty =02 Ga |

This implies that the universe is spatially homogeneous and isotropic
gince there is no direction defined in the 3-space orthogonal to Ua.

Ir this universe we consider small perturbations of the motion
of the fluid and of the Weyl tensor. We neglect products of small
guantities and perform derivatives with respect to the undisturbed
metric. Since all the quantities we are interested in with the
exception of the scalars, p,fx, ® have unperturbed value zero, we
avoid perturbations that merely represent coordinate transformation
and have no physical significance,

To the first order the equations (1) - (4) and (7) - (9) are

oo’ = hepin (13) |

I|

Ha' © = (rh) wa () |
£ L+ EL 0+ heMmede W HT o ch (pah) oub (15)
H.oy *Han 0 = ' @iy cde W Ef"e =8 5 (16)
O =-30%+ L -ty (17)
Gy = "3 WO+ U9 h? b, ¢ (18)

A ) ? 11
A R (19)

O .
Q
=
]
mI
9
pu
I
[N
Qq'
o
O
!
\,dii_
2
>
L




grom these we see that perturbations of rotation or of E_, or Hoy do

not produce perturbations of the expansion or the density. Nor do

perturbations of Eab and Hab produce rotational perturhations.

4y, The Undisturbed Metric

Since in the unperturbed state the rotation and acceleration
are Zero, Ua must be hypersurface orthogonal.

uq_=‘"l";a 5

where T measuresthe proper time along the world lines. As the
gurfaces T = constant are homogeneous and isotropic they must be
3=purfaces of constant curvature. Therefore the metric can be

written, N
ds* = -dv*+ Oy’

where ) = Q () ,

d*{a is the line element of a space of

zero or unit positive or negative curvature.

e define t Dby,

dr G '
then ds? = Qt("dtz* d\a’i] ,
In this metric, Uy = (-0, 6,0,0)

; 6’;39-- 3 ()

- - = et

(¥ 9)

(prime denotes differentiation with respect to t)




phen, by (5), (7)

-

ﬁ =7 (}*++1) ié% 9 (20)
5% = =rlpesn) (21)

If we know the relation between | and ﬁ., we may determine (1
We will consider the two extreme cases, i = 0 (dust) and ﬁt é%-
(radiation)n Any physical situation should lie between these.

For h = O

By (20), P ﬁ% N = const.
LE
0-! 1
/ - .g__"-_ - T3 =0
M 261 :
3 a2
y —— 5‘] o = R =
M Q 2 5 B const
(a) For E 0,
- e EM O (F L JEM
g) = 2[_:_" ( CC)%")(} -—-%-" t - i) > “t' - 2E (f\/ﬁ\ _.LVTL\ —-—_—5— t t)‘;
(b) For B = 0,
M 2 -
O = = t i L= e T .

0 IH T
i (o [ sinfEM
S & == - CC / =l ) T =3¢ (t TNZE 3 ‘
(7 o ( I - cos ) =T , 2 F EM
E represents the energy (kinetic + potential) per unit mass.

If it is non-negative the universe will expand indefinitely, other-

wise it will eventually contract again,




ons *R,the curvature of the

By the Gauss Codazzi eguatil

ig q]-_\.:‘)‘(-«'é—e)‘f/u)

hypersurface T = const, 1

E=0, xg = o ;
E <o , f’_:_ _ -3
& '.Arjé £ I\f\ - =

For N = M5

acam

it 3 2
’ ' N
Y Bas ‘ {
(a) For B >0,
(L = —= sinht |

-

(b) For E = O,

~
1I.
P

5. Rotational Perturbations
(Wokb f‘\.

fort h

il

By (6) . h¢ d
LA LC;C'!:" LI i"b




For jl: o

Thus rotation dies away as the universe expands, This is in fact a
statement of the conservation of angular momentum in an expanding
universe.

6. Perturbations of Density

For ﬁ-: 0 we have the equations,

!):;. = -"‘/.LQ

O =-508-1tM

These involve no spatial derivatives. Thus the behaviour of one
region is unaffected by the behaviour of another, Perturbations
Will consist in some regions having slightly higher or lower values
of E than the average. If the universe as wh-le has a value of E

grea’

cT

e¢r than zero, a small perturbation will till have B greater

than gero and will continue to expand. It will not contract to




form & galaxy. If the universe has a value of E less than zero, a

gmall perturbation can contract. However it will only begin
contracting at a time & v earlier than the whole universe begins

contracting, where

5T _ o &
L
. s
re B,
g ig the time at which the whole universe begins contracting,

There is only any real instability when E = O, This case i of
measure zero relative to all the possible values E can have,
However this cannot really be used as an arguement to dismiss it

ag there might be some reason why the universe should have © = O,

For a region with energy -8E , in a universc with E = O

L2

e i S a -
Por B = 0, =z &

Thus the perturbation grows only as 'Téﬁ . This is not fast enough
o produce galaxies from statistical fluctuations even if these
could occur, {owever, since an evolutionary universe has a particle
horizon (Rindler(a), Penfoae(g)) different parts do not communicate

in the early stages. This makes it even more difficult for

statistical fluctuations to occur over a reg: n until light hed time

to eross the region,
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;8 before, a perturbation cannot contract unless it has a negative
value of B, The action of the pressure forces make it still more

dgifficult for it to contract. Eliminating O,

- g 3 BT .
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to our approximation.

WV ho¥V,  is o
n e M"a Vb 1is the Laplacian in the hypersurface T = constant.

«(n)

Yo represent the perturbation as a sum of eigenfunctions © of
this operator, where,

S () c )
9 e =0

2

Y= C )

I U-L( hh bu Sf H)_; b) - - - '_g-’_z_'-’— =

These eigenfunctions will be hyperspherical and pseudohyperspherical
harmonics in cases (¢) and (a) respectively and plane waves in case

(b). In case (¢) n will take only discrete - Jlues but in (a) and

(b) it will tseke &ll positive values,




where is the undisturbed density.
L1 (0]
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These perturbations grow for as long as light has not had time to

travel a significant distance compared to the scale of the perturbation
1
L

( ~ = ). Until that time pressure forces cannot act to even out

perturbations.

)

When 2o M R “om B () nt g
(@) e, - ¥ z““'* = 2 =5,
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e obtain sound waves whose amplitude decreases with time. These
. S o e ; . en(3)
results confirm those obtained by Lifshitz and Khalatnikov x
From the forgoing we see that galaxies cannot form as the result

of the growth of small perturbations. We may >xpect that other non-

]

gravitational force: will have an effect smaller than pressure equal




to one third of the density and so will not cause relative perturbations

o grow faster than T ., To account for galaxies in an evolutionary
gyniverse we must assume there were finite, non=-statistical, initial

inhomogeneities.

7. Ihe Steady-state Universe

To obtain the stcady-state universe we must add extra terms to

the energy-momentum tensor., Hoyle and Narlikar(1o) use,
. i .o
Tab = M Uoto + Fhay - Calpr /2 30 CdC (20)

where, C‘u.: C
il -

}-.D = (/L,{-l‘{I) g

: ib
S8ince Tab' =0

1

}4 ¥ QJ._I h_) e & Ve Crt Q;_,"b = O
(21)

s 3.
(50 ) toar fyuh®a-haCiCaeo,

There is a difficulty here, if we require that the "C" field




ghould not produce accelerstion or, in other words, that the matter

created should have the same velocity as the matter already in

existence , We must ‘thén have

}1b¢\ Cy =0

However since C ig a scalar, this implies that the rotation of the

medium is zero, On the other hand if (23) does not hold, the equations

are indeterminate (c,f. Raychaudhuri and Bannsrjee(ﬂj)). In order to
have a determinate set of eguations we will adopt (23) but drop the
requirement that Ga is the gradient of a scalar. The condition (23)
ig not very satisfactory but it is difficult to think of one more
patisfactory. Hoyle and Narlikar(12) seek to avoid this difficulty

by taking a perticle rather than a fluid picturec. However this has a

(15))'

serious drawback since it leads to infinite fields (Hawking

From (17), h

Ca B = 4y [_ = 55:}L'+QA*;315 ]

2 L a_;a = ( /LM ]1) - ((”J' 1') v 2

1

M Gal-oy>-rery Il oo




For /[_,L P *f"l,

(a+ 1) = 0 (1 - )

!

R (/&+'ﬁ_} — 1

hus, small perturbations of density die away. Moreover equation (18)

=

still holds, and therefore rotational perturbations also die away,
nguation (19) now becomes
z
’ L. [ JEg 4 2 .
g=-=0-% Qu.i) n) + 1

5 B "*"Jf;E‘%"fi)
(14)

These results confirm those obtained by Hoyle and Narlikar . Ve
gsee therefore that gaslaxies cannot be formed in the steady-state
miverse by the growth of small perturbations, However this does not
exclude the possibility that there might by a self-perpetuating
system of Tinite perturbations which could produce galaxies.

(1 ff:))’

. . 15 . o
(dolama( ’), Roxburgh and Saf'fman

tional ''aves

We now congider perturbations of the Weyl tensor that do not

arise from rotational or density perturbations, that is,




ge obtain, after a lot of reduction,

Eab i (lzcd}ﬁiﬁgflﬁ{jPWi)j;}1kélﬁi}1z + %; [§c¢,6

¥ Eab(:é t %Baf'z'ﬁ-_(,l-t“?»'fﬂv + UA\{%B(,UJ%) v 7 7’1)] = Q (24)

a

In empty space with a non-expanding congruence U this reduces to |

the usual form of the linearised theory,

0% B, =o

The second term in (24) is the Laplacian in the hypersurface

“C = constant, acting on Eqb . We will write Eab as a sum of
eigensfunctions of this operator.
i - Lw') LT\‘)
I_: L = E_ A \/a. ‘L)
.
. ?\)
where V, =0 p
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= . f[tt’l-) (v )
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Lin W o e
then by (19) Df\’: QA -2TD ol

gubstituting in (24)

it ¢ I{n) ") z Qu QW‘ Ll 2
S %2"’5‘ v A [ﬂ*_}ﬁ’féﬁi + 5 (M 3@0}

e DO [ Qprh) + 3 QA R)) =0

We may differentiate again and substitute for 1
For " >7 |

L
and (l % “m

| int
R S
e Q5

; i s ; -1
g0 the gravitational field Eab decreases as (l

and the "energy"

5B B30 . H Hab) as () o . We might expect this as the
ab ab

Bianchi identities may be written, to the linear approximation,

D ged%‘:&(—(}*' C a’acoi) = J abe

Therefore if the interaction with the matter could be neglected

CH. to (171,

would be proportional to (0 and B, -

abcd ab

In the steady-state universe when p and ©6 have reached their

equilibrium values, TQah-:{g v ﬁjgﬁﬁ

Ju.bc o R c[_(:r-;b] - 'Jg' < (‘.{.a .R;b]

£z O




thus the interaction of the "C" field with gravitational radiation is

gqual and opposite to that of the matter. There is then no net

. X ) -1
interaction, and hab and Hab decrease as S .
L w8 . ab . & . -
The "energy" %(g,bp + ‘Hbﬂu ) depends on seeond derivatives
[+ X L=

of the metrie, It is therefore proportional to the frequensy squared
times the energy as measured by the energy momentum pseudo-tensor, in

a local co-moving Cartesian coordinate system which depends only on
first derivatives., Since the frequency will be inversely proportional
t0 EQ y the energy measured by the pseudo-tensor will be proportional

i) X , _
t0 Cl d ags for other rest mass zero fields.

9. Absorption

sy

Of Gravitational Waves
As we have seen, gravitational waves are not absorbed by a
perfect fluid. Suppose however there is a small amount of viscosity.

We may represent this by the addition of a term W T to the

energy-momentum tensor, where A ig the coefficient of viscosity
2 1
(Eniers, V7)),
g y b
Since T ks =6

we have
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gquations (15) (16) become

a . N " l/J.“:
Ewo + EabB + h'@eae Ut H 7 = -2 (4 ) G

~5 M (Eao-$0,,6), (27)
" - ;e
"I b Hab@ - h f'CL?b)[‘C)-E L,l{ E{ = ___Ili_‘ A |—’E-I{D | (28)

The extra terms on the right of equations (27), (28) are similar to
conduction terms in Maxwell's equations and will cause the wave to
decrease by a factor e ?%t . Neglecting expansion for the moment,
guppose we have a wave of the form,

Ealﬂr: Eqbel‘v?‘

O

This will be mbsorbed in a characteristic time ?7? independent of
frequency. By (25) the rate of gain of rest mass energy of the
matter will be 2N * which by (19) will be 2 X\ OEZ V' “. Thus the
available energy in the wave is 4% aE( 152 « This confirms that the
density of available energy of gravitational radiation will decrease
as C] . in an expanding universe. Irom this we see that
gravitational radiation behaves in much the same way as other
radiation fields. 1In the early stages of an evolutionary universe
when the temperature was very high we might expect an equilibrium to

be set up between black-hody electromagnetic : diation and black-body

gravitational radition. Since they both have two polarisations their




energy densities should be equal, As the universe expanded they woull

poth cool adiabatically at the same rate. As we know the temperaturc
of black-body extragalactic eleciomagnetic radiation is less than
5OK , the temrperature of the black-body gravitational radiation mus?y
be also less than this which woul.l be absolutely undetectable. Now
the energy ¢f gravitational radiriiion does not contribute to the

ordinary energy momentum tensor qu . Nevertheless it will have an
cl

active gravitational effect. By the expansion equation,

T 2
'—..—' —‘ /
{:j = *'ge -2.0'—‘-5_'(/-/("*'31’\) .
For incoherent gravitational radiation at frequency v ,

2
b
0 ¢ = OE '1)
But the energy density of the radiation is 4 E v

0"~ % Mo - k(K r3h)

Wi

whei s gy is the gravitational "“energy" density. Thus gravitational
radiation has an active attractive gravitational effect. It 1is
interesting that this seems to be just half that of electromagnetic
radiation,

(10)

and Hoyle and Narlikar " g

(18)

It has been suggested by Hogarth
that there may be a connection between the absorption of radiation
and the Arrow of Time. Thus in universes like the steady-—-state, in

Wnich all electromagnetic radiation emitted is :ventually absorbed by

other matter, the Absorber theory would predic retarded solutions of




the Maxwell equations while in evolutionary universes in which

electromagnetic radiation is not completely absorbed it would predict
advanced solutions. Similarly, if one accepted this theory, one would
expect retarded solutions of the Binstein equations if and only if all
gravitational radiation emitted is eventually absorbed by other matter,
Clearly this is so for the steady-state universe since A will be
gconstant. In evolutionary universes A will be a function of time.

We will obtain complete absorption if ‘E2d¢‘ diverges. Now fr2 a gas,
La:T% where T 1is the temperature. For a monatomic gas, Tcﬁ.fl_g,
therefore the integral will diverge (just). However the expression

used for viscosity assumed that the mean free path of the atoms was
small compared to the scale of the disturbance. S8ince the mean free
path < umtfffl_i and the wavelength K f?.*1 » the mean free path will
gventually be greater than the wavelength and so the effective viscosity
will decrease more rapidly than @ -1 o Thus there will not be complcte
absorption and the theory would not predict retarded solutions,

However this is slightly academic since gravitational radiation has nos

yet been detected, let alone investigated to see whether it corresponds

to a retarded or advanced solution.
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CHAPTER 3

Gravitational Radiation In An

Exvanding Univeirse

Gravitational radiation in empty asymptotically fla&t
space has been examined by means of asympbtotic expansions

il . o
(1-4) They find that the different

by a aumber of authors.
components of the outroing radiation ficld "peel off", thet
is, they go s different powers of the affine radial distance.

w

If one wishes to investigate how this benhaviour is modified
by the presence of matter, one is faced with a difficult:

that does not arise in the case ol, say, electromagnetic
radiation in matter. For this one can consider the radiztion
travelling through an infinite uniform medium that is static
apart from the disturbance crcated by the radiation. In the
case of grovitational radistion this is not possible. lor,
if the medium were initizlly static, its own self gravitetion
would cause 1t to contract in on itself and it would cease to
be static. Hence one is forced to investigate gravitationsl
raaliation in matter that is either contracting or expanding.
48 in tChapter 2, we identify the Weyl or conformal
bensor . h.l with the fre~ gravitational field and the

.. . () ) . ] ,
Riccl-tensor “ah with the contribution of the matter to the

curvature. Instead of considering gravitational radiation in




acymptotically flat space, taat is, space that epproacheas

flat space at large radial distances, we consider it in
asymptotically conformally flat space. As it is only
conformally flat, the Ricci-tensor and the density of mutter
need not be zero.

o avoid essentially non-gravitational phenomena such
ac sound waves, we will consider gravitationalradiation
travelling through dust. It was shown in Chapter 2 that =
conformally flat universe filled with dust must have one oi
the metrics:

) : 2

sk - Rl of
(a) de? . Q" - a‘tﬁﬂ' il (L% sin "8 d(

0 . A (1-cest) (.1)
2, Dt(de’-

AL (1. 2)

\
il
e

{n[’ 1 ; ﬂ ' C.[_,E ‘- f.i():'— oin h {;7) (ub ii" T “_:.-e.fl. Ll‘ x.!/,-l
5= Alcosht -1) {4

Pvype(a) represents a universe in which the matter
expands from the initial singularity with insufficient energy

to reach infinity and so falls back again to another

singularity. It is therefore unsuitable for a discussion of




gravitational radiation by a method of &symptotic expansions

since one cannot ;;et an infiniie distance from tThi® source.

Type (b) is the Linstein-De Bitter universe in which the
matter has Jjust sufficient energy. to reach infinity. It is
thus a special case. D. Norman (5) has investigated the
"peeling off" behaviour in this case using Penrose's conformal
— (6) ré i ; —— T S —
techrique . He was however forced to m&ke certain assumpt-
ions about the movement of the matter which will be shown to
be false. lioreover, he was misled by the special noture of
the Hinstein-De 3Sitter universe in which affine and Lluminosilty
distances differ. Another reason for not considerin;; radiction
in the winstein-De Sitter universe is that it is unstable.
vassage of a gravitational wave will cause it to contract
azalin eventually and develop a singularity.

de will therefore consider radiation in a universc of
type (¢) which corresponds to the general case where the
matter is expanding with more then enough enerzy to avoid

contracting again.

2. ''he Newman-Penrose Formalisn

"
we employ the notation of Newman and Penrose.()> A

A Vu r {.-’L —
tetrad of null vectors,U, n ,/Q, m’“ is introduced




gravitational radiation by a method of asymptotic expansions

since one cannot et an infinite distance from thi@ source.

Type (b) is the Linstein-De Bitter universe in which the

matter nhas just sufficient energy to reach infinity. It is

g b=
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thus a special case. D. Norman (5) has investigated the
"peeling off" behaviour in this case using Penrose's conformal
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technique . He was however forced to make certain assumpt-
ions about the movement of the matter which will be shown to

ol

be false. lioreover, he was misled by the special noture of
the kinstein-De Sitter universe in which affine and luminosity |
distances differ. Another reason for not considering radiction

in the tinstein-be Sitter universe is that it is unstable.

he passage of a gravitational wave will cause it to contract

azailn eventually and develop a singularity.

pr

4e will therefore consider radiation in a univewrsc of
type (¢) which corresponds to the general case where the
matter is expanding with more then enough enerzy to avoid

contracting again.

2. 'I'he Newman-Penrose Formalisn

We employ the notation of Newman and Penrose.()) A
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tetrad of null vectors,é&’rl}loi ﬂlf& is introduced
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we label these vectors with & tetrad index

-l (A Ll “:1,2,3 4,

{‘.1..
tetrad indices are raised ana lowered with the metric
ab -
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Ricci rotation coefficients are defined by:
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In fact it is

complex
follows:
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more convenient to
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3, Coordinates

Like ilewman and Penrose, we introduce a null coordinate
w(= &' )
\)x l/ /F
Y ! UL \ W v = O \ '.(".'_.ll )
e e

! I 3 / .
we take l‘h = L b /b\ . Thus L g will be
geodesic and irrotational. This implies

K e O
(- ﬁ; 3.2)

e = TL ———t

bl J ‘T = & F A

we btake [ -
NE Mt M

to be parallelly transported

along [ ™ . This gives ;-
e 3. 3)
[j o E’ = 6 ( _j ‘
|
AS a second coordinate we take an affine parameter r’(.zf*) |
\

long the geodesics L

¥ LT = EY)

s and XY are two coordinates that label the geodeuic
in the surface L = const. o /
- . / : -3 = ¥
x oM Rl © (3.5
pv
Thus i& e g,
= 161 O Of

In these coordinates R =T R é AA L




The field Ecuatilions

wWwe may calculate the Ricci and Weyl tensor components from

the rslabions
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Using the combinations of rotation coefficients already
defined and with K=1T=6¢ =0 we have
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where







the rotation coefficients in terms of the metric,

Expressing

we have:
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is in Chapter 2 we use the Bianchi identities as

field equations for the Weyl tensor. In the lNewman-renrose
formalism they may be written:

(I am indebted to R. G. McLenaghan for these)
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4, 'The Undisturbed Metric

The undisturbed metric may be written

s
51 = HCgesh &=4)

put {i = & )

shen d S . \_)/)_?' (I"C{/UL?‘ L 3 ?C{,u(){ tE-Sin LLC(—' u)({(,é‘fg,nzéu[f)z
) F “ (¢ 1)

(. 1s a null coordinate

'o calculate [*, the affine parameter, we note thet C

is an affine parameter for the metric within the square

bruckets. Therefore S jﬂﬂ ‘10L C E (LL, @’, (/J) (‘_*__'

will be an «ffine parameter for(u*l)

I? is constant aleng the null geodesic., Normally it
would be taken so that = O when f = W . However,
in our case it will be more convenient to make it zero and

£ = j:ﬁldb/ (4 3)

define I as

‘'his means that surfaces of constant ¢ are surfaces of
constant £ . This may seem ruther odd, but it should
be pointed out that the choice of jg will not affect the
asymptotic dependence of guantities. That is, if

1[ - O(&A'"”‘)

Then

.f = O CT';Afm) ¥ f = f‘+ﬁ3
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It proves ezsier to perform tire calculations with this

choice of pF but all results could be transformed buack
to a more normal coordinate system.,
/ ) - = '
o ,g ‘1- ’ r‘__.'__u / 5 ) <
i"rom (ﬁ'- ) ¥ = [7[ /'._SI:"L}LZL QS’:/L,A&'T TI_Z:—* @ (!)
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The matter in the universe is assumed to be dust so its
energy tensor may be written
= W W (¢.5)
72xb f$ w b o
I'or the undisturbed case, from Chapter 2

po= 6A

) L Jaer A =38 less 4 0(sT) (o )

where g'l_ ¢
Therefore if we try to expand }A as a series din pownr of £

the result will be very messy and will involve terms of

e L (2P
the form @2@}.& *

Sﬂ.

*Tt should be pointed out that the expansions used will
only be assumed to be valid asymptotically. They will not
be assumed to converge at finite distances nor will the
quantities concerned be assumed analytic. (Ssee A. Brdelyi:

Asymptotic fixpansions = Dover




This does not invalidate it as an asymptotic expansion but

it makes it tedious to handle. For convenience therefore,

we will perform the expansions in terms of _jz.(r) which
will be defined in general as the same function of [ as
it is in the undisturbed case. That 1is

| B Hlcosh €-i) |
woere o A™ [‘:; gm}\ﬁt - Bsnh €T g’i_‘ E-J
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For the third and fourth coordinates it is more convenient to
use stereographic coordinates than sphericol polars,

Since the matter is dust its energy-momentum tensor

and hence the Ricci-tensor have only four independent

; S i : - LT o e 9
components. We will take these as /\;Chao ‘C?of .
(Zince (?u‘ is complex it represents two components)

In terms of these the other components of the Ricci-tensor

may be expressed as:
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fou et fo (4.10)

given: /\ = f _ /3
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Ci)ll o 24
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Goi > Poa = O

Using these values and the fact that in the undisturbed
. s . .
universe all the '¥fk are zero, we may integrate equations

(5. 10-50) to find the values of the spin coefficients for tThe

unperturbed universe: R 2 2w —i
P = —.2-1“_@* F--fi]_c )jZ‘t_
52 Je? 2 2
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5. Boundary Conditions

We wish to consider radiation in a universe that

asymptotically approaches the undisturbed universe gjiven

above. (b- and /\ will then have the values
oD
ziven above plus terms of smaller order. To determine this
order ond the order of Qb‘ and %é y thiere-are two
o
ways in which we may procecd. e may take the smallest orders
that will permit radiation, bthat is V; = )(Q' i) v
Larger order terms than these in fi s /\ and
dj turn out to have their (L derivatives
bl

dependent only on themselves and not on the [~ ! coefficient

of uﬁ. , the radiation field. They are thus disturbunces

not produced by the radiation field and will not be considered.

Alternatively we may proceed by a method of successive




approximations. ¥We take the undisturbed values of the snin

cozfficients and use them to solve the Bianchi Identities os
field equations for the conformal tensor using the flat snace
boundary condition that 'Hc'; C)(Vﬂi) « Then substitutings
these 'Yf“ in equations (3.i0 — 2F ) calculate the disturb-
ances inauced in the spin coefficients and substituting tThese
back in the Biancni Identities, calculate the disturbances in
the WFm . Murther iteration does not affect the orders
of the disturbances.

Both these methods indicate that the boundery conditions

should be:

/’] " _& ¥ O(ﬂq) (SJ\)

o= 38+ O (5.2

F i
—=-
o

1

o i
(}Cﬁl ) (see next section) Gi_§>

- (jc;fl”}) i
o = (5 )
We also assume"uniform smoothness", that is:
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)9, (51"
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1v wall be shown that if these boundary conditions

hold on one hypersurface (u = const.) they will hold on
succeeding hypersurfaces and that these conditions are the

most severe to permit radiation.

Integration

As Newman and Penrose, we begin by integrating the
equations (3. 10 &11)
_p(j‘ = ?/0
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then i)jj 2 P.QT' © @£4J>
o p L (2
then D % 7 m @ 7 (C‘S)

since ST(QCLT < o

p \'[ = F T O(‘) ‘where}i is constant (é-’- {{)\
i BTV F OC?')
However  (p . @'f‘%) _2 2
therefore Dl k/ g = CPF r O (7 ® ) = O (T k. ) <(_/;)
= 727—63 (}'-%)

therefore D '*/'

_ I
\f = T ?7 7+ D(T 1)75_ C:is constant
= =3
P - ""?’ -L Y O (T * @ C)
Lo W . . ;
if - is non-singular (The case F singular corresponds to

asymptotically plane or cylindrical surfaces and will not be
considered here).

Thus () = Y Iil'r', O(F #% ) o FQ ﬂ‘-? " %ﬂs)
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Integrating,

therefore
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Repcat the process with

fan AN gt )
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O (bog L)

where ﬂ
h o= o (1)
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Unlike INewman and Unti, we cannot m=ke (3 zero by

Q . _
, Since this would

A - Jﬁ_ 5 A

alter the boundary condition J\N = .
TEP 9]

the transformation ¥ = ¥ - @

Continuing the above process we derive:
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To determine the asjyumptotic behaviour Of qu'x,szﬁ

5 { .

and &2 we use the lemma proved by Newman and Fenrose:
The N x 7 matrixPand the column vector b are

given functions of x such that:

S T

The n »x 1 matrix A& is indepencent of xX and has no
eigzenvelue with positive real part. Any eigenvalue with

vanishing real part is regular. Then all solutions of:

. - Z?'
-Q— Lj = (yg X T )-j 7 b
J 4
are bounded a8 } ) cﬂ) . ,j is a column
vector.

For reaso’ s to be explained below, we will assume for

the moment that -

~0

We take as if the column vector
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Using this we integrate equatlion C;-JQJ by the same

method as above. e obtain

B 0ol xS o) a3 )

se may make a null rotation of the tetrad on each null

e _ - _
p amﬁ - &.mju + @O0 tﬁ»

/
geodesic L_#L

ik
ﬂﬂ'ﬁA = /Wf; T G fo

¢~ is constant alone the geodesic since the tetrad is

parallelly transported.

L) AEO
we may make

(
By taking @ = 2'C

v
1
G

Jnder a null rotation .
ad' = .7 0-(?)
ol - ai o0
Phus until we heve specified the null rotation we cannot
inpose & boundary condition on q?n more severe than
S e --S. : " o L ;
(ﬁ - L(fl ) . We will specify the null rotation by
Q|
VDU_ O and in that tetrad system will 1lmpose the
1 LT ) v 18 o
boundary condition that = and is uniformly smooth.
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by equation Cg.Q'Q)
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then by equatio ('_2,_ L
| then q ion )vE o{_ﬂ_ \,)

sutting this back in equation (3-({(()
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by eguation (gﬁ)
$ = o(SL 71 log )
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uniformly smooth.
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we may use the lemma again with j

Lj = \,Q.l >\
JL =

By equations 3 j¢. 3. /P 6.28,

Fe
A‘ - 2
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o O O l:
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R and. b are

Therefore

and are uniformly smocth
From (4; 29) and ('3_/?), we may Show
o= Qﬁn"kr o(N"*los )
using this in (6. 28)
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Integrating the radial equations ? .‘:S’, K /(( p 3 HS;“C! ,-§ ((i £ (( S
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By making the coordinate transformation
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we still have the coordinate freedom
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We may use this to reduce the leading term of 8 J 5&) £5
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a onforml]l; flat metric (c¢.f. Newman and Unti), that is:
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where

ggo " #ng'o;- P(u‘ﬁ‘l) .

7. Non-redial Tguatvions

By comparing coefficients of the various powers of \J},
in the non-radial equations of é.g , relations between
the integration constants of the radial equations mey be
obtained:
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In eguation 3. 43 the term in S s
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By making a spatial rotation of the tetrad
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tereograpaic project factor for a 2-sphere.
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Therefore if the boundary conditions (3- f"@> nold on

one null hypersurface, they will hold on succeeding hypersur-

faces.
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As mentioned before, this asymptotic behaviour is i

f the zero of r
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for definiteness:
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Thus the derivative of %ﬁj y epenas only on itself

and not on the radiestion field. 1t therefore reuresents a
type of disturbance unconnected with radiation. If it is
zero on one hypersurface, it will remain zero. In this case
it is possible to continue the ex»ansions of all guantitie:
in negative powers of.jz without any log terms appesring.
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&. The Asymptotic Group

The metric has the form:
G i X i3 - LY s
y Y o

@)
g

o L 7 4 ! ~

Q4 = ~2PPEI T 2pPRENNTL ol

The asymntotic group fs the group of coordinate trensformations
that leave the form of the metric and of the boundary conditions

unchanged. It can be derived most simply by considering the

corresnonding infinitesimal transformations:
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This is a consecsuence if the fact that

X Xk
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(€. 12) anu(%,ti) imply that (\  is en analytic function of
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reduceua the leading term of U“ to a conformally flat

A

form. ‘Whus the only allowed transformations of x are thne

conformal transformations of the form:

Ly
N

ngiXLJ-ﬁ a(\gf¢x°>f}7 ﬂi
C (X 7 Er X-?)w;- Cé

Ok C'L it JI:) = /

L

When tue six parameters a, P, C,CL are given M is uniquely
cgetermined by (93f0) £ is also uniquely determined. %Ynus
Che asymptotic group is isomorphic to the conformal group in

two dimensions. dachscy) has shown that this is isomorphic

to the aomogzeneous Lorentz groun. It is also however igsomorpiic

to the group of motions of a %-space of constant nezative

curvature which is the group of the unperturbed Robertson-
‘alker space. Thus the asymptotic group is the same as the

roup of the undisturbed space. It is not enlarced by the

presence of radiation. This is interesting because in the

case of grevitational radiation in empty, asymplotically flat |
space, it turns out that the asymptotic group contains ncot

only the 10 dimensional inhomozeneous Lorentz sroup, the group

of motions of flat space, but also infinite dimensional
"supertrauslations". It has been suggested that these

supertranslations mignt have some physical significance in

clementary particle physics. The above result would seem




Ssirce

to indicate that this is probably not tThe case s our

universe is «lmost certainly not asymptotically flat thouzh

mey be asymptotically Robertson-walker.
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The velocity wvector Y: of an observer movin: with thas
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Cl , the projection of the wave vector
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'he observer's orthonormal

space~like unit vectors
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e write
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- measuring; the relative

purticles, the observer ma

e = (‘l/ot Cf/l
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accelerations of neighbouring du
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tetrad may be completed by two

5

'ta

and
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y determine the 'electric'

coimponents of the gravitational wave:
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observer's tetrad this has components
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Sinzularities

If the Linstein eguations without cosmological constant
are satisfied, a Robertson-Walker model can 'bounce' or avoid
a singularity only if the pressure is less than minus one-
third Uhe density. This is clearly not & property ovossessed
by normal matter though it might be possessed by a field of

negative energy density like the 'C' field. fHowever there 1is

a prave quantum-mechanical difficulty associated with the
existence of negative enerzy density, for there would be
nothing to prevent the creation, in a given volume of space-
time, of an infinite number of quanta of the negative energy
fizld and a corresponding infinity of particles of posivive
energy. If we therefore exclude such fields, all Rovbertson-
Wallker models must be of the 'big-bang' type, that is they
have a singularity in the past and maybe one in the future
as well. It has been suggested 1 that the occurrence of

Ched

these singularities is a consequence of the high degree of
symmetry of the Robertson-Walker models which restricts the
expansion and contraction so that they are purely radial &and

that more realistic models with fewer or no exact symmetries

would not have a singularity. This chapter will be devoted




to an examination of this question and it will be shown thab

provided certain physically reasonable conditions hold, any
model must have a singularity, that is, 1t cannot be =2

- a ; i 2 ;
zeodesically complete C ', piecewise C~ manifold.

2. The Mundamental Eouation

~

LA
The expaension Q = V’ ‘o of a time-like geodesic
4

Qo
congruence with unit tangent vector L/ obeys equation (7)

of Chapter 2:

T e, —46r-aeh det Ry VYT 6

A point q{ will be said to be a singular point on a Heodesic
E/ of a time-like geodesic congruence ifdfor the congruence
ie infinite on y’ at i’ . 4 point a} will be said to be
conjuzate to a point F along a geodesic X’ if it is a
singular point on { of the congruence of all time-like
seodesics through f) . A polint ﬁ» will be said to conjuzgate
: p3 o .
to a space-like hypersurface. if it is a singular point
of the congruence of geodesic normals TGo [ . 4An alternative
description of conjugate points may be given as follows:

K™

let f be a vector connecting points corresponding distances

alony two neighbouring geodesics in & congruence with unid




L

: ; o _ : ;
Gangpent vector l/ Then ¢ is 'dragged' along by the

congruence, tnat
£ K" =0

a

R T < (@

'S

b Gz CL

o, pEpBgt RS JYVTR 6

Ds?

-
[6)]

Introducing an orthonormal tetrad € parallelly transported
a o a ™
olons; ¥V with € = V we have
@
-l "l’
{ K e
ok K —a K (q)
m

ol %

I

c a
wWhere n noo b | V V
B = = Qa e hel

& solution of (y) will be called a Jacobi field. There are
: g ’ G , a ; §l/“
clearly eight independent solutions. Since V and a2V
solutions, the other six indevendent solutions of @0 mey be
o ik ; : V&. : : , : _ i
taken orthozonal to . mnencL is conjugate to P along

a geodesic af‘ if, and only if, there is a Jacobi field along

13y

rr

wialch vanishes at P and r.i/ . This may be shown as follows:

the Jacobli fields which wvanish at P nay be regarded as

L

generaving neighbouring geodesics in the irrotational congruent

& ¢ ¥ cogey

of all time-like geodesics through P 3 Therefore they obey
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o P (1 n
e VK
Mrn
el ¢
| LThey may be written
n
K - A dH
e Mo C:LS’ P
Ll/
wiere CL F}
mn : b/ fq
m.F N
ek
e P ! A (33 will be positive definite.

nin
a Jacobi field vanishing at

But A(S) % MP(Sg vV &LS’J)
!

(dek (M)

l'herefore | ol
det(ﬁ) as
mn

v

and 92
CdA . e
P mi N

ol e™ P
CL is finite
E)_L'é" anm) L

‘'herefore

| w LS

points where neighbouring geodesics intersect.

_ - N s Ny
and ﬁ/ if, and only if,eet(/7L4)]-U

N | &
Hence 61 is infinite where and only where clel
the two definitions of conjuzate points are equivalenty.

also shows that singuler points of congruences are

will De
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~
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f'//\> 2 {0
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l'or null geodesic congruences with parallelly transported

ac
tangent vector é_ we may define The converzence QO as
|

in Chapter 5. This obeys '
| (. g2 66+ 4R, LILE (9)
o = (77 ob
e define a singular point of a null geodesic congruence as

one where V is infinite.

'he condition that the pressure is greater than minus

w

one-third tohe density may be stated more generally a

condition (a).

e = X
(a; ¢ % C)J & - A JJ for any

& — 317G ,A b
observer with 4-\;@1001-53 w2 , Where G = )C‘\_I'l - .

is Tthe energy density in the rest-frame of the observer and
— — & —_— ; 3
| = | & 1s the rest-mass density.
Condition (a) will Dbe satisfied by a perfect fluid with
: 7 &b
density p2© and pressure PAP “apM . It impliesA v V/O;or
3 . é

, - ; o : ;
any time-like or null vector V . 'herefore by equations

(1) and (5) any time-like or null irrotational geodesic

conzruence must have a singular point on each geodesic within
a finite affine distance. Obviously if the flow-lines form i
sn irrotational geodesic congruence, there will be a vhysical i

singularity at the singular points of the congruence where

the density and hence the curvature are infinite. This will

be the case if the universe is filled with non-rotating dust ~ .

I

However, if the flow-lines are not geodesic (ie. non-vanishing ‘
pressure gradient) or are rotating, equation (1) cannot be |

applied directly.




5, bpabially ilomozenecous Anisotropic Universes

s ~F I e ] 1 PO - 1o ey = E B (B9 . v e R
The Robertson-ilalker models are spatlially houozeneous

and isotropic, that is, they have a six parameter group of

- .

pece-like surface. 1f we reducs the

o

motions Uransitive on a
symmetry by considering models thet are spatially i:omozgereous
but anisotropic (that!is, they have a three parameter group
of motions transitive on a space-~like hypersurfazace) then
the matter flow may hsve rotation, acceleration snd shear.
Thus there would seem to be the possibility of non-singular
: , ST ; W - ;

models. L. Shepley has investigated one particular
homogeneous model containing rotating dust and has shown that
there is always a singularity. Here a general result will be
proved.

There must be a singularity in every model which satisfi
condition (&) and,
(b) there exists a Qy- of motions on the space or on

universal coverinyg space P‘sz which is transitive on at

b vee section 5

es

lecast one space-like surface but space-time is not stationary,

(c) the energy-momentum tensor is that of a perfect fluid,
. v\" . i I [
F-[;J; = (,Uk 'rP) UL& u-b"' ?SC*-\v . LL 1s the tangent o

flow-lines and is uniquely defined as the time-like eigen-

vector of the Ricci tensor.




PROOY

R, The curvature scalar must be constant on snace-—

Tlee @i iae £ t'1"""c"' U e ﬁ £ +ha . i} At A 7

LiKe suriace O1L LansSlClVvViTy oL ©Tne Zroup. +~fereiore N

¥ ¢

e " . a1 — . 3 . . . o
mist be 1n the direction of the unit time-like normal V

Co }fg .
Mg <@ { Byo ) f?o_
/f

[

where Q\d» R:ah = F 20

E}Cﬁg j is an indicator = +1 if Q.a is past directed
/G- . '
= =1 if Q;‘L is fubture directed

Then \{d_ '] =0.

Thus U& is a congruence of geodesic irrotational time-like

a b
vectors. By condition (a), QQL Vv " >0 "

LTherefore the congruence must have a singulor poilnt on eac
seodesic ( by equation 1) either in the future or in the
Murther, by
, ﬁ3,v i - . — , - " ‘
from to the singular point must be the same for each -eo:

‘'hus 1f the surfaces of transitivity remain space-like,

must degenerate into, at + st,

be uniquely defined . Let be the subsetv

0
2
of the matter which intersect C: . Let L be the non-

3
empty subset of ff intersected by M . Since there is a

ey 3
group transitive on 14 ,£~ must be H itsel

the homogeneity, the distance along each geodesi

o e
ICAOD w e

2Ll .

. " e, ; .
he most, a 2-gsurface ¢~ which will




(sl -y

5
flow=lines G;rnugh.ﬁ must intersect the 2-surface C-. Thus

the density will be infinite there an. there will be a

[
4 3
o
a

physicel singularity. Alternatively if the surfac

transitivity do not remain space-like, there musct

€

w
oo
D
-
<
L
b
H
[}
O

least one surface which is null - call thi

9 % " ’ o

Ko O (Iﬂ?za_ls zero, we can take any other scalor
o‘ &,

nolynomial in the curvature tensor and its covariant derivatives.

They cannot all be zero if sopace-time is not stationsry,. e
35 1

introduce a geodesic irrotational null congruence on 27 with

0

Gl 7
tanzent vector L where L ﬁ, . Then by equation (5),
(N ; O

there will be a singular point of each nuli geodesic in 57

within finite cffine distance either in the future or in the

past. ‘he 2-surface of these singular points will be uniquely

I B 1 i

defined. The same argumenc used pefore shows that the density

becomes infinite and there is a physical singularity. In fact

>
as 87 is a surface of homozenelty,

A

the whole of Sﬁ will be
singulze and 1t is not meaningful'to call it null or to

distinguish this case from the case where the surfaces of

transitivity remain spnace-like.

Fhe conditions (a), (b), (¢) may be weakened in two ways,

Condition (b) that there is a group of motions throughout

7 P
space-time may be replaced by (b") and (d4d).




/ 3

o
(b ) Theawm is a space=-like hynersurface fJ in which there

R I T .C\, 1 3
are three independent vector fields X  such that
NN
1

£ - O ‘ WP X &,
3[0\ Cjbf— ' Lt‘:\ ch&e = QO on H'b . That is, there
X X

)’ 1

1s one homogeneous space section.
(d) There exist equations of state such that the vaucny
development of is determinate.
Then sug¢ceeding space-like surfaces of constvant Q
are homozeneous and much the same proof can be given that There
/
P ey s X 1 . T B QR < e . £y ™ £’y -
are no non-singular models satisfying (a), (b), (c), (d).
The only proverty of perfect fluids that has been used

in the above proof is that they have well defined flow-lines

intersection of which implies & physical zingularity. Obviousl]

however, tnis »nroperty will be possessed by a much more ger
class of fluids. Ior these, we define tThe flow vector as
time-like eigenvector (assumed unique) of the energy-momentun
tensor. ‘Then we can replace condition (¢) on the nature of
the matter by the much weaker condition (e).

(e) If the model is singularity-free, the flow-lines forr
a smooth time-like congruence with no singular points with
a line tuarough each point of space-time.

Condition (e) will be satisfed automatically if conditions

(a) and (c) are.

3




This proof rests strongly on the assumption of

homogeneity which is clearly not satisfied by the physical
universe locally though it may hold on a large enough scale.
nowever it would seem to indicate that large scale effects
like rotation cunnot prevent the singularity.

.

It is of interest to examine the nature of the singularity

o

in the homogeneous anisotropic models since this is more

likely to be representative of the general case tThan that of

the isotropic models. It seems that in general the collapse
will be in one dircction,5 that is, the universe will coll&apse

down to a 2-surface. Near the singularity, the volume will be
proportional to the time from the singularity irrespective of
the precise mnature of the matter. It also apsears that the

nature of the particle horizon is different. There will be

a particle horizon in every direction except that in which

the collapse is taking place.

4, BSincularities in Inhomogeneous Models '

lLifshitz and Khalatnikov6 claim to nhave proved that &
general solution of the field equations will not have a
singularity, Their method is to contract a solution with a
singularity which they claim is representative of the

general solution with a singularity, and then show that it

has one fewer arbitrary function than a fully general solution.




Clearly tihelir whole proof rests on whether their solution

¥

is fully representative and of that they give no proof.
Indeed it would seem that it is not representative since it
involves collapse in two directions to a 1-surface whereas
in general one would expect collapse in one direction to &
2-surface. In fact their claim has been proved false by
Penrose7 for the case of a collansing star using the notion
of a 'closed trapped surface'. A similar method will Dbe
used to prove the occurrence of singularities in 'open '

universe models.

5. '"Open' and 'Closed' Models

The method used by Penrose to prove the occurrence |
of a physical singulsrity depends on the existence of a |
non-compact Cauchy surface. A Cauchy surface will be taken

surface that

@

to mean a complete, connected spuce=lik
intersects every time-like and null line once and once only.

=1

Not all spaces possess a Cauchy surface: exaumples of those

2 B

- |

. " . . . O , - o
that do not include the plane-wave metrics, the Godel model,”
’ . | m 10 i g " ol ] % R AR PR
and N.U.T. space. However none of these have any paysical
significance. Indeed it would seem reasonable to demand of
any physically realistic model that it possess a Cauchy

surface. If the Cauchy surface is compact, the model is |

commonly said to be 'closed'; if non-compact, it is said to




to be 'open'. The surfeces, t = constant, in the Robertson-

dalker solutions for normal matter are examples of Cauchy
surfaces. If K = -1, they have negative curvature and it is
frequently stated that they are non-compact. [nis is not
necessarily so: there exist possible topologies for which
they are compact. However, the following statements may be
made about the topology of the surfaces t = constant.

If the curvature is negative, K = -1, the universal
covering space is non-compact and is diffeomorphic to 35 LR
Any other topolozy can be obtained by identification of |
points. ''hus any other topology will not be simply connected |
and, if compact, must have elements of infinite order in the
fundamental group. Yurther if compact, they can have no
group of motions./12

If the curvature is zero, X = O, the universal covering

; 23 ; bl R . . 1 o
space 1S i?. There are eighteen possible topolozies. 5 If

compact they have a G5 of motions and Betti numbers, Bq = 5,
- 12
B, =3 .

If the curvature is positive, K = +1, the universal
3 .
covering space is S7. Thus all topologies are compact. <The
et 12
Betti numbers are all zero.

since a singulaerity in the universal covering space

implies a singularity in the space covered, Penrose's method

is applicable not only to spaces that have & non-compact Cauchy




surface but also to spaces whose universal covering space

has a non-compact Cauchy surface. 4Yhus it is applicable To
models which, at the present time, are homogeneous and 1so-
tropic on a large scale with surfaces of aporoximate homo-

genelity which have negative or zero curvature.

6. ‘'he Closed Trapped Surfoce

Let f? be a 3-ball of coordinate radius r in a %-surface

ﬂj (t = const.) in a Robertson-Walker metric with X = QO or -1.
.y , . . . - , 2 . "
Let q° be the outward directed unit normal to T°, the boundary

i

of 13, in H5 and let V* be the past directed unit normal to

ﬂﬁ. Consider the outgoing family of null geodesics which

intersect T2 orthogonally. At T? , Gheir convergence will
. ) ~ | " . (<8 b ‘O._b
be: {0 % -—,i(l/&:b TQ&;E)(S) TP &k )

s

; y [N % 2 - - :
where X £© are unit space-like vectors in H” orthogonel

o q and to each other,

%[/JELI’ = Tf-\/:—ﬁg']

R

cr

i
[ F

herefore f

0 or -1, by taking r large enough, we may

2 o q ik N B :
« Therefore, in the language of Penrose,

if w7 (@) and K
make*? negative at T

= P : . "
P is a closed trapped surface.

Another way of seeing this is to consider the diagramn




in which the flow-lines are drawn at thelr propexr spatial

disbance from an dserver. Tdhey all meet in the singularii)
at t = 0. 1f the past light cone of the observer is drawn

on tnis diagram, it initially diverges from his world-line

( f <0 ). It reaches a meximum proper radius ( f =& )
and then converges again to the singularity ( F;>CJ )Y« The
%

intersection of the converging light cone and the surface I
~a i - o 4 4= ¥ f ;-12 [ MR B 3 - e - R, T B
gives a closed trapped surface T-, If the red-shifv of tThe
guasi-stellar 3C9 is cosmological then it will be beyond whe
point F 2 O 4if we are living in a Robertson-vialker type
universe with normal matter. However, the assumptions of

5

homogeneity and isotropy in the large seem to hold out to tThae

distance of %C9., Thus there 1s zood reason Lo believe thut

our universe does in factv contain a closed trapped surfice.
It should be pointed out that the possession of a closec
trapped surface is a large scale property that does not denend
on the exact local metric. Thus a model thet had local irrezul-
arities, rotation and shear but was similar on a large scale
at the present time to a Robertson-Walker model would have a
closed trapped surface.

Following Penrose it will be shown that space-time has
& singularity if there is a closed trapped surface and :
() E O for any observer with velocity

(g) there is a global time orientation




(h) the universal covering space has a non-compact Cauchy

surface H”.

PROOFK
Assume space-time is singularity free. Let F be the
A
cet of points to the past of H’ that can be joined by a

i
b
me

smooth future directed time-like line to 17" or its inbterior

- 5 -3 . = : . - ,

T”?. Let B” be the boundary of ¥ . Local consideratvions show

that 57 - 177 1s null where it i1s non-singular and is

generated by the outgoing family of vast directed null geodesic
s . - -, ; " i

segments which have future end-point on T and vast end-point

where or before a singular point of the null geodesic

congruence. w~ince at T2 , bhe convergence, f’? @ and

oy b
since f\JM:L L 2 0 by (£f), the convergence must

become infinite within finite affine distance. “Yhus Bj - :3
will be compact being generated by a compact family of compact
segments. idence 55 will be compact. Penrose's method is
then as follows: approximate 35 arbitrarily closely by a

smooth space-like surface and project ba onto H” by the

normals to This surface. +his gives a many-one continuous

A A
mapping of B” into H5. oince B” is compact, its image B~

W O

P
must be compact. Let(ifQ) be the number of points of B’

mapped to a point Cq of ﬁﬁ, @LG@) will change only at the
= =

intersection of caustics of the normals with H?. Moreover,

by continuity d,@p) can only change by an even number.




- : 7173 0‘3"‘)
But C{CT%): 1 since this is the identily and d,(H"b = Q.

'his is a contradiction, thus the assumption that space-time
is non-singuler must be false. An &alternative proceedure

wiich avoids the slightly questionable step of approximating
: by a space-~like surface is possible 1if we adopt condition
(e) on the nature of the matter, then 55 nay be projected

continuously one-to-one onto i by the flow-lines. +his

; .. 2 s : . B
again Ieads to a contradiction since B5 is compact and H
is not.
1 - 1) = ] ¥
In-the "rhnxre p?"f\ﬁ{‘ ii{- vrac necessany Lto—dexn ni taok

b
T i i1 Wwill he o Oanechsyr cenrface for nnints aW=Nr b < S
B & —.
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each flow=line at wosti once.iherefore—thores—is—oa—6

=

. - > - - o 3 1 3 T . R o P e -} x
wilstbdntbtersscs 0;2 M1 (D__ L5 b@”e@*ﬂ@,@ﬁﬂ]c ola) .D aRG—LS

CORPEGEv——if—condition(f)-holds—everynull gaodesic—gener-tox
IR .

OSSO Te

since @3 ig comnact Thus '5 is _a Caonechyv surnface.
e Cifebf . e @

8. pingularities in 'Closed'! Universes

i

J - - I = 1 E 3 L - i s B B 5 T |
, There is a singularity in every model which satisfies

(a), (g) and (i).

"N

(1) There exists a compact Cauchy surface H” whose unift
O Z
normal Uf has positive expansion everywhere on H’.
i'or the proof it is necessary to establish a couple of
lemmas. Assume that space-~time is singulearity-free. The
) following result is quoted without proof, it mey meadily be
derived from lemmas proved in reference 11.
i 5 P and q‘ are conjugate points along a geodesic Y

and X is a point on i’ not in Pi thenY¥ must have a conjugate

point in P@’.




An immediate corrollary is tnat if q is tThe first voint

along y conjugace to p and y 1is in pq then y nss no

conjugate points in pq . 4Also since the result that x

hzs a conjugate point in pq can only depend on the valucs

of Q, in pq, any irrotational geodesic congruence including
M A

the geodesic Y must have a singular point on b’ in pa.

Thus if g is a point on ﬁ§ and E’ is the geodesic normal to

W

M” through ¢, then a point conjugate to q along 'f' cannot occur

until after a point conjugate to HB.
1E ﬁ5 is a complete connected space-=like surface which
intersects every time-like and null line from a point p, we
may define & function over M5 as the square of the geodesic
distance from p which is taken as positive if the geodesic is
time-like and negative if the geodesic is space-like. e call
this the world function & with respect o p. Ior the closed
set of vilues & 2O s, O will be a continuous ( in
general multi-valued) function over Na. A time-like geoc..csic
f from p will be said to be critical if it corresponds

- M " ' i
to a value of & for which ,/uf = 0 (L= L2 3)

-

M . .
where C are three independent vectors in Ma. Clesrly

(A
a critical geodesic must be orthogonal to Ha. A geodesic




which is eritical will be said to be maximal if it corresponds to a

local maximum of .
Lemma 1.
; ; D aia :
A geodesic 0 cannot be maximal for a smooth M~ if there is a

3

but no point conjugate to q on ¥ in gp,

M2

point X conjugate to M

where q is the intersection of & and
Let £ and g be the Jacobi fields along ) which vanish at X
m m

and P respectively. They may be written
|

n
f = A(s) f/q 4
m mn
n
g = B(s)e/q .
m mn _
1 / / A { § i 0l
Then IR s g ) ] ) N must be positive for
n o e ¥ n
any h since if it were negative for any h by taking a =-b h h

mb m n
/"T.

beyond q, it would be possible to have a point y on & beyond q

conjugate to A before a point conjugate to P . If it were zero
would be conjugate to [ . This shows that the surface at q
of constant geodesic distance from { lies nearer to [ in every

direction than the surface of'v of constant geodesic distance from
J'/.

3

X does. Since X is conjugate to M’ the surface at g of

constant geodesic distance from [ lies closer touﬁ§ in some

: . S 3 X . ;
direction than M” does, Hence () is not maximal.




sdstbo-positivecefinite—abx—Bub—acx
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fore there must be some direction for which

< L3 ~¥ 1 1 r
ds mna ale o
a fu\———& '
; ¥ s

i o, Ly A / N - .

¥ - " v
at—g Where iA) dg the unit tancent vector of fthe consruarso

A - P o s

Qi —geodesies tl"'ﬂmlt‘;h P Thus in the direchtion ¥ the surfece

oser—to—p—vher

|

;
If M7 is compact or if the intersection of all time-like

and null lines with N’ is compact, & wust have a maximu.:

})

value, thus there must be & jeodesic normal to M’ through p
longer tnan 'f . We use this to prove another lemut.
Lemma 2

If p lies to the future (past) on a time-like Eeodesic

(‘ through g, beyond a point z conjugate to g,and taere

8

f o - —,J .3 - 1 4 1 -
exists & compact Cauchy surface H” tnrough q, then there

must be snother time-like geodesic from p to g longer thau_r

Let y be the last point conjugate to g on { before p.

Let x be the nearest point to p conjugate to p in pq. Let

r be a point in yx. Let hﬁ be the set of points which have

a future (past) directed geodesic of length rq from g. Then




1

5
K”? will be & space-like hypersurface through r. Let F

be the set of points which nave at lzast one fuuiure (past)
i \ b /

directed peodesic from q of length greater than rq. <Yhen the

boundary of ¥, Jac: Ka. Since p is in F' and since every

past (future) directed time-like and null line from p interse
4 b 4 #

=3 Sl & % . 4 : ; g - 3

H”? which is not in F , Ghey must also intersect 3, let 7

be the intersection of J5 énd these lines. ince iﬁ is

compact, L5 must be compact. OConsider the function O with
respect to p over KE. Its maximum must lie in the compact
region 55. put, by the previous lemma {' is not muximal,
moreover, local considerations show that a singular vnoint in
the surface J5 cannot be a maximum of O . Thus the
maximum value of @ must occur for a zeodesic from p ortao-
gonal to Lﬁ. This must also be a goedesic from o to g of
length sreater than { .

Using; these two lemmas the theorem may be proved. oince
the future (past) directed normals to I—l5 are converging
o D —_— : % .
everywhere on H”, there must be a point conjugate to H” a
finite distance along each future (past) directed geodesic
normal, Let ?, be the maximum of these distances. Let »

be a point on a future (past) directed geodesic normal at

a distance greater than ¢, . Consider the function C with

C

Cs




b
respect to p over the compact surface H”. Let/% be the

5

seodesic from p normal to H” at the point q, whereO has its

e,
-

maximum. ‘“There must be a point conjugate to H” along A in ¢o.
But if there is no point conjugate to g along )\ in ap, then
% cannot be maximal by the first lemma. If however there
is a point conjugate to g along.% in gqp, then there must be
a longer geodesic from q to p by the second lemma. [hus
4

is not the geodesic of maximum length from H” to p. his is
a contradiction which shows that the original assumption tnat
the space was non-singular must be false.

1'his proof could also be used to show The occurrence
of a singularity in a model with & mon-compact Cauchy surfcce
provided trnat the expansion of its normals was bounded away
from zero and provided that the intersection of the Cauchy

surface with all the time-~like and null lines from & point

was compact.
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